- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Juntunen, Cory (2)
-
Shea, Peter (2)
-
Sung, Yongjin (2)
-
Abramczyk, Andrew R. (1)
-
Nyakuchena, Melisa (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Refractive index is an optical property explored in the light scattering measurement of micro- and nano-particles as well as in label-free imaging of cells and tissues. Because the refractive index value is a major input to the characterization and quantification of the analyzed specimens, various methods have been developed targeting at different sample types. In this paper, we demonstrate a technique for the refractive index measurement of homogeneous microspheres and liquids in the short-wave infrared (SWIR) range. We use synthetic phase microscopy (SPM), which records a scattering-corrected projection of the 3D refractive index distribution, in combination with a least-squares fitting to a theoretical model of a sphere. Using the method, we determine the refractive index dispersion of two polymer microspheres (polymethyl methacrylate and polystyrene), two glass microspheres (silica and soda lime), and three microscopy mounting media (glycerol, FluorSave, and Eukitt) in the SWIR range of 1100–1650 nm.more » « less
-
Juntunen, Cory; Abramczyk, Andrew R.; Shea, Peter; Sung, Yongjin (, Sensors)Spectroscopic microtomography provides the ability to perform 4D (3D structural and 1D chemical) imaging of a thick microscopic specimen. Here, we demonstrate spectroscopic microtomography in the short-wave infrared (SWIR) wavelength using digital holographic tomography, which captures both the absorption coefficient and refractive index. A broadband laser in tandem with a tunable optical filter allows us to scan the wavelength from 1100 to 1650 nm. Using the developed system, we measure human hair and sea urchin embryo samples. The resolution estimated with gold nanoparticles is 1.51 μm (transverse) and 1.57 μm (axial) for the field of view of 307 × 246 μm2. The developed technique will enable accurate and efficient analyses of microscopic specimens that have a distinctive absorption or refractive index contrast in the SWIR range.more » « less
An official website of the United States government
